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Mobility spectrum computational analysis using a maximum entropy approach

S. Kiatgamolchai,* M. Myronov, O. A. Mironov,† V. G. Kantser,‡ E. H. C. Parker, and T. E. Whall
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
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A method to calculate a smooth electrical conductivity versus mobility plot~‘‘mobility spectrum’’! from the
classical magnetoconductivity tensor in heterogeneous structures with the help of a ‘‘maximum entropy prin-
ciple’’ has been developed. In this approach the closeness of the fit and the entropy of the mobility spectrum
are optimized. The spectrum is then the most probable one with the least influence of the personal bias of the
investigator for any given set of experimental data and is maximally noncommittal with regard to the unmea-
sured data. The advantages of the maximum entropy mobility spectrum analysis as compared to the conven-
tional mobility spectrum analysis are demonstrated using a synthetic dataset.
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I. INTRODUCTION

The research and development of various types of mod
electronic devices requires accurate modeling and analys
transport phenomena. Using the semiclassical Boltzm
theory or the single-particle density matrix formalism@1#,
one can quantify the transport coefficients in the framew
of the density functional theory@2#. For example, knowing
the band structure and the phonon spectrum of a mate
one can use the Bloch-Boltzmann equation and the lin
response method to calculate the electron-phonon scatte
probabilities and hence the experimentally measured ele
cal resistivityr and Hall coefficientRH . An example of an
application of such a complicated approach occurs in
case ofd metals@3#, but there are few others. Similar mode
that may be used to investigate the transport characteri
of semimetals and semiconductors include continuu
ensemble averaging and Monte Carlo simulations@4#. The
latter, in particular, can explicitly take into account both t
band structure and the various scattering processes. It
mits direct computation of all quantities relevant to transpo
such as carrier distribution function, density, velocity, et
but unfortunately at the cost of long computation time a
stochastic noise in the data.

All of the above approaches are very complex and me
ingful comparisons of experimental results with theoreti
predictions are difficult, especially for multicarrier system
~e.g., compound semiconductors, layered and device he
structures with several different types of carriers!. Since
1980s, new methods of examining experimental data on e
trical transport have been developed. A ‘‘mobility spectru
analysis~MSA!’’ was proposed in the pioneering paper
Beck and Anderson@5#, and developed@6,7# as a useful tech-
nique for analyzing galvanomagnetic phenomena. M
transforms the electrical conductivity tensor versus magn
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field B into conductivity densitys(m) ~defined below! versus
mobility m. This procedure replaces the commonly used
rameters~carrier concentration, average mobility, and H
coefficient! in the conventional transport approach. It is ve
important to note that MSAdoes not require any a-priori
assumptionsabout the number of different types of carrie
~carrier species!.

The reduced-conductivity-tensor~RCT! scheme was de
vised @8# as an alternative to MSA for determination of th
carrier densities and mobilities in multicarrier semiconduc
systems. A matrix formalism of the magnetoresistance
Hall effect, based on the RCT, has also been further de
oped @9,10#. The MSA and RCT methods have been tes
for many real systems such as Si, HgxCd12xTe, GaAs, and
for various layered structures.

However, for both the MSA and RCT approaches it
almost impossible to ensure that the solution obtained d
not contain unreliable negative values for the transport
rameters. A major objective in our approach to MSA, p
sented in this paper, is to ensure that the solution obtaine
always physically meaningful, i.e., everywhere positive. T
is achieved using the maximum entropy principle~MEP! of
information theory. The MEP method has been applied s
cessfully in geophysical spectral analysis, beginning with
seminal work of Burg@11#. One can find examples of MEP
applications in astronomy@12#, neutron scattering@13#, x-ray
photoemission spectroscopy depth profiling@14#, processing
of nuclear magnetic-resonance spectra@15#, electron-positron
annihilation experiments@16#, and in secondary-ion-mas
spectrometry depth profile quantification by maximum e
tropy deconvolution@17#.

The MEP method in data analysis is a variational a
proach. In the context of the analysis of transport pheno
ena, Sondheimer@18# was the first to discuss transport coe
ficients in metals, treating the Boltzmann integro-different
equation as a variational problem. This approach is base
the principle of maximum production of physical entropy
the entropy principle~EP! and is a minimization procedure
which in mathematical aspect is similar to that developed
our paper. Later work has established that the variatio
method of transport coefficients takes rigorous account of
band structure and of anisotropic scattering mechanism
semimetals@19# and semiconductors@20#.
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The variational approach is very useful for theoretic
studies of transport phenomena in magnetic fields@19,20#. It
has been used to describe the transport coefficients of
muth materials@21,22# and narrow gap semiconductors su
as lead telluride@20# with highly anisotropic effective masse
and in a wide range of~nonquantum! magnetic fields. Re-
cently, the variational method and the EP have been use
analyze the transport properties of semiconductor quan
wells @23#. We have outlined some peculiarities of the var
tional method for transport phenomena, because in
present maximum entropy approach we also aim to realiz
suitable tool for the possible study of energy-dependent
laxation times and band structure features, as suggeste
Beck and Anderson@5#.

The major aim of this paper is to present mobility spe
trum formalism based on the MEP and to demonstrate
advantages of maximum entropy mobility spectrum analy
~ME-MSA!. The paper is organized as follows: in Sec. II
brief review of the various MSA methods is given. The ba
ME-MSA approach is introduced in Sec. III, and it is show
how it might be used to obtain carrier densities and mob
ties for different types of carriers on the basis of the ME
The application of the ME-MSA to synthetic datasets is d
cussed in Sec. IV. The paper concludes in Sec. V wit
discussion of the advantages of ME-MSA in comparis
with earliest MSA approaches.

II. MOBILITY SPECTRUM APPROACH

MSA is a multicarrier characterization tool that emplo
the magnetic-field-dependent resistivityrxx(B) and Hall re-
sistivity rxy(B)5BRH(B). It is capable of treating differen
groups of carriers~carrier species! identified according to
their different average mobilities, and hence differe
responses to the classical magnetic field. Using a se
experimental data points „B,rxx(B),rxy(B)…, the
magnetoconductivity1 tensor componentssxx(B) and
sxy(B) can be obtained from the relations:

sxx~B!5
rxx~B!

@rxx~B!#21@Brxy~B!#2 , ~1a!

sxy~B!5
BRH~B!

@rxx~B!#21@Brxy~B!#2 . ~1b!

These tensor components are related to the mobi
dependent conductivity densitys(m) by the integral trans-
forms:

sxx~B!5E
2`

` s~m!

11~mB!2 dm, ~2a!

sxy~B!5E
2`

` s~m!mB

11~mB!2 dm ~2b!

1All conductivities, resistivities, and carrier densities referred to
this paper are equivalent 2D or ‘‘sheet’’ values.
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derived by Beck and Anderson@5#. In their pioneering paper
they transformed the McClure integrals@24# over k space
into integrals@Eqs. ~2a! and ~2b!# over the mobilitym and
have introduced the electrical conductivity density functi
s(m) called the carrier mobility spectrum. Similar densi
functions can be defined in a conventional transport
proach:s(k) in wave vector space ands(E) in energy space.
However, only the mobility spectrums(m) can be obtained
immediately from the experimental magnetoconductiv
data ŝ(B) using an inverse Laplace transformation and
contains all the information that can be extracted fromŝ(B).
Therefore, MSA is very useful from the practical point
view and it has become a new approach for characteriz
magnetotransport in conducting solids.

The reason that Beck and Anderson chose McClure’s
pression@24# as the starting theoretical concept is becaus
is valid at any arbitrary magnetic-field strength and the
laxation time is allowed to depend on the energy and cry
momentum in the magnetic-field direction, provided the
laxation time is constant on the cyclotron orbit. This shou
be compared with other Boltzmann transport approaches
are valid only in low or high classical magnetic fields@25#. A
parabolic dependence of energy on crystal momentum is
assumed when deriving Eqs.~2a! and ~2b! from McClure’s
expression. Beck and Anderson argue that ifs(m) can be
solved accurately, rather than merely obtaining the envelo
it will provide all the information that can possibly be ex
tracted from the magnetoconductivity, which can be summ
rized as follows.~1! the conductivities of different carrie
species can be identified by distinct peaks ins(m); ~2! the
broadening of each peak will indicate an energy depende
of the relaxation time;~3! if the constant-energy ‘‘surface’’ is
anisotropic ~i.e., nonspherical!,2 the s(m) spectrum of a
given group of carriers will contain several peaks that are
components of the mobility tensor;~4! constant-energy ‘‘sur-
faces’’ with both concave and convex sectors will result
both holelike and electronlike terms in Eq. 2~b!.
This method has been applied to a number of different se
conductor materials, for example bulk-HgTe@26#, thin film
HgTe @27#, bulk-HgxCd12xTe @28#, thin film HgxCd12xTe
@29#, HgTe-CdTe superlattices@30#, AlxGa12xAs/GaAs het-
erostructures@31#, Si–d-doped GaAs@32# InxGa12xAs/InP
heterostructures@33#, Si–d-doped InSb@34#, InP on a semi-
insulating substrate@35#, and SiGe/Si heterostructures@36#.

For any measured set of data, the first mathematical p
cedure to obtains(m) as a solution to Eqs.~2a! and~2b! was
developed by Beck and Anderson@5#. However, because th
number of data points is finite, it is impossible to determi
s(m) uniquely by this method. In fact, the proposed proc
dures can only provide an envelope of all possible mobi
spectrum solutions. This envelope can be regarded as y
ing the maximum conductivity at each mobility that the me
sured material might have. Nevertheless, thes(m) peaks in
this envelope have been shown to provide good approxi
tions to the mobility and carrier concentration of each carr
species.

2Contour in the case of a two-dimensional carrier gas.
5-2
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MOBILITY SPECTRUM COMPUTATIONAL ANALYSIS . . . PHYSICAL REVIEW E 66, 036705 ~2002!
Subsequent developments in the mobility spectrum
proach have involved mathematical techniques that
proved the accuracy of the obtaineds(m) values. Dziuba and
Gorska@6,37# have transformed Eqs.~2a! and~2b! into their
discrete forms

sxx~Bj !5(
i 51

N
si

11m i
2Bj

2 , ~3a!

sxy~Bj !5(
i 51

N
sim iBj

11m i
2Bj

2 , ~3b!

which are similar to those used in a nonlinear least-squ
fit @38#. Thus, the partial conductivitysi , and mobilitym i ,
( i 51,2, . . . ,N) in Eqs. ~3a! and ~3b! can be iteratively
solved by using the Marquardt algorithm@39#. In the mobil-
ity spectrum calculation,N represents the number of mobil
ties which are arbitrarily defined to cover a wide range
likely mobilities of all carriers. It should be large enough
that a resultant set of partial conductivitiessi is virtually
quasicontinuous, and is equivalent to the conductivity d
sity s(m). As a result, the term ‘‘mobility spectrum’’ usuall
refers to either a set of partial conductivitiessi and mobilities
m i or a conductivity densitys(m). Taking all data points into
account, Eqs.~3a! and ~3b! constitute two systems of equa
tions, which are linear insi . A set of partial conductivitiessi
is deduced by a simple iterative technique@6#. The plot ofsi
versusm i oscillates around zero partial conductivity with th
biggest positive partial conductivity occurring at the mobil
corresponding to the actual average mobility of the majo
group of carriers in the material. The oscillation means t
some of the partial conductivity isnegative, which is un-
physical. An additional ‘‘smoothing procedure’’ has bee
proposed to minimize this effect but it is found that the ne
tive partial conductivity cannot be entirely suppressed wh
maintaining an acceptable fit to the data. In this iterat
technique, a set of mobility pointsm i is arbitrarily chosen in
the rangeBmin

21 to Bmax
21 , whereBmin and Bmax are the mini-

mum and maximum measured magnetic fields. The num
of mobility points is then limited by the number of measur
magnetic-field points and the lowest mobility is set by t
maximum magnetic field available.

An extended version of the iterative technique has b
developed by Antoszewskiet al. @40#, which is known as
quantitative mobility spectrum analysis~QMSA!. In QMSA,
the Gauss-Seidel successive over-relaxation iteration me
is employed to give faster convergence and the partial c
ductivities are constrained to be non-negative at all itera
steps. The mobility range has been extended3 to values ofm
less thanBmax

21 by extrapolation of the experimental data
higher fields than the maximum measured magnetic fi
@41#. A higher number of mobility points is also obtained b
spline interpolation between the experimental data poi
Even though these procedures seem to overcome prob

3No details of how the mobility range is extended are given in
original paper.
03670
-
-

es

f

-

y
t

-
e
e

er

n

od
n-
n

ld

s.
ms

inherent in the iterative technique, the use of interpolat
and/or extrapolation of experimental data is questionable
cause there are several interpolation and extrapolation t
niques available, and the modification of original data pr
to calculation is subject to investigator bias and error.

An improved QMSA~iQMSA! @7# has removed the limi-
tation in the number of mobility points by not confinin
these to the valuesm i5Bi

21. The range of mobilities and the
number of mobility points are then independent of the ran
and the number of points of measured magnetic field, resp
tively. iQMSA differs from the iterative technique an
QMSA, where it minimizes the least-squares deviation
both the conductivity tensor and its derivative with respec
the magnetic field. In addition, empirical procedures~two/
three-point swapping and point elimination! for manipulating
the mobility spectrum are introduced and shown to impro
the fits while smoothing the spectrum and making it ‘‘mo
physically reasonable.’’ Despite these refinements, it mus
said that empirical procedures are likely to be case spe
and are dependent on the individual bias.

III. ME-MSA FORMALISM

In correspondence with earlier variants of the MS
method, the conductivity tensor components can be
pressed as a fine grid of possible mobilities:

sxx~Bj !5(
i

N

s~m i !cos2 u i j 5
1

2
s01

1

2 (
i 51

N

s~m i !cos 2u i j

~4!

sxy~Bj !5
1

2 (
i

N

s~m i !sin~2u i j !, ~5!

whereu i j are the Hall angles of the carriers with mobilitym i
in magnetic fieldBj and can be determined by the standa
relation tanuij5miBj , s05S i 51

N s(m i) is the conductivity at
zero magnetic field. In Eqs.~4! and~5! the function of partial
conductivity s(m i) has the forms(m i)5sp(m i)5em i p(m i)
for the holes, andsn(m i)52em in(m i) for the electrons. It
defines the mobility spectrum of holes in the positive part
them-coordinate axis, while in the negative part of them axis
it defines the mobility spectrum of electrons.

Within our formalism both the holes and the electro
havenon-negativepartial conductivities, but their mobilities
are positive and negative, respectively. It is natural to
such sign definitions of the carrier mobilities, because in
given electrical fieldE the holes and electrons have a diffe
ent directions of the drift velocityyd

i 5m iE. Therefore, the
tensor component of the magnetoconductivitysxx(Bi) is
written in Eq.~4! as an even function ofu i j , while the Hall
componentsxy(Bj ) is written as an odd function ofu i j , and
the peculiarities of multicarrier longitudinal and transver
magnetoconductivity are correctly reflected.

The task of the MSA method is to find those spectra t
provide the best fit to the experimental datasxx

expt(Bj)
5sxx

j (expt.) andsxy
expt(Bj)5sxy

j (expt.) at all values of the
available experimental magnetic fields.

e

5-3
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All the previous attempts to generate an accurate mob
spectrum were based on minimizing the deviations betw
the experimental data on the magnetoconductivity ten
and the fit given by equations similar to Eqs.~4! and ~5!.
Beck and Anderson@5#, Dziuba and Gorska@6#, and
Antoszewskiet al. @40# minimized the deviations at a give
magnetic fieldBj by simultaneously adjusting the electro
and the hole partial conductivities,s(m i) at the mobilities
m i5Bj

21. The optimization procedure was extended
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iQMSA @7# to fit the magnetoconductivity tensor and its fir
derivative/slope with respect toB. The purpose of the
iteration procedure was to establish what combinations
carrier type, mobility, and concentration led to the small
deviations.

The deviation squared was chosen as the quantity to
minimized in all previous approaches to MSA. For examp
in iQMSA, the optimization procedure is based on the f
lowing squared deviation:
x j
25

~Dxx
j !21~Dxy

j !21~Dxx*
j !21~Dxy*

j !2

N$@sxx
j ~expt.!#21@sxy

j ~expt.!#21@sxx*
j~expt.!#21@sxy*

j~expt.!#2%
, ~6!
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Dab
j [sab

j ~expt.!2sab
j , ~7!

Dab* j 5BjF]sab
j ~expt.!

]B
2

]sab
j

]B G
B5Bi

~8!

are the deviations for the conductivity tensor compone
and their slopes, respectively, at given magnetic fieldBj .
HereN is the total number of the pseudodata points.
The ME-MSA approach developed in this paper is based
a fundamentally different procedure as it optimizes the fit
the magnetoconductivity tensor components on the basi
the MEP@15#. The main concept is to consider the mobili
spectrums(m i) in the form of a probability distribution of
several events, which are supposed to be associated wit
discrete values of the mobility parameterm i ( i
51,2, . . . ,N). The corresponding probabilitiespi are as-
sumed to be the reduced values of the corresponding pa
conductivitys(m i):

pi5
s~m i !

s0
. ~9!

The probabilitiespi are unknown. All we know are the ex
pected values of the magnetoconductivity tensor compon
sab(Bj ) and that the probabilitiespi are required to be posi
tive, and to satisfy the normalization conditionS i

Npi51.
From the information theory viewpoint, prior to the measu
ment there are no data and the most probable distributio
an equal distribution amongst all events. As we obtain
first few data points, they allow us to adjust the probabil
distribution in such a way that it produces a good fit to t
measured data. However, at this early stage, there are
enough data points to produce a unique probability distri
tion because the number of data points is less than the n
ber of events. Consequently, there are many feasible p
ability distributions that agree well with all the data poin
Rationally, one would prefer to choose the probability dis
bution, which is maximally noncommittal with regard to u
available ~i.e., unmeasured! data. Examples of unavailabl
ts
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o
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ts

-
is
e

ot
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data are those between two adjacent measured data poin
the magnetic-field axis and data at higher magnetic fie
than are practically available. Jaynes@42# has shown that the
most likely probability distribution amongst feasible distr
butions can be found by assigning ‘‘an entropy’’ to ea
probability distribution and choosing the one with the hig
est entropy. It has recently been shown@43# that the concept
of entropy and its increase can be understood in general a
‘‘amount of uncertainty’’ as it is understood in informatio
theory, without reference to either statistical mechanics
heat engines.

Thus our ME-MSA approach is to combine minimizatio
of the fit deviation from measured data with the principle
entropy maximization. Using the probabilitiespi defined
above, the entropyH is written as

H~s!52(
i 51

N

pi ln pi . ~10!

From this universal expression an equal distribution of pr
abilities follows in the case of zero magnetic fields. Equat
~10! describes in a unique way the amount of uncertai
represented by a given probability distribution and it is t
only one which satisfies the condition of consistency i
posed by the composition law@42#. Mathematically, the
maximum entropy distribution has an important property t
no possibility is ignored and it assigns a positive weight
every situation. In the context of our ME-MSA approach,
is very important to note that the conditional maximum
Eq. ~10! can be found from a stationary property involvin
Lagrange multipliers, which will be introduced below, an
that the conditionpi>0 is always satisfied.

We have pointed out that the optimization approach
previous MSA versions is based on the minimization
squared deviations such as those given in Eq.~6! and used in
iQMSA. In the framework of ME-MSA, this is equivalent t
defining the entropy asH52S i 51

N pi
2. The properties of such

defined quantity are similar to Eq.~10!, and its use in other
applications leads to equivalent results@42,44#. However, the
conditional maximum of entropyH52S i 51

N pi
2 is impos-

sible to find on the basis of a stationary property involvi
5-4
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Lagrange multipliers, because the distribution probabil
which makes this quantity stationary subject to prescrib
averages, does not in general satisfy the conditionpi>0
@42,44#. The negative values ofpi @or s(m i)] could appear
in previously proposed variants of MSA. Therefore, the
quirementpi>0 must be imposed at all stages of compu
tion and analysis.

One of the more important advantages of the ME-M
approach in comparison with previous MSA is that it do
not allow unphysical negative conductivities. With the he
of maximum entropy principle, it is now evident how t
develop themathematical modelof ME-MSA. The problem
reduces to the maximization of the entropy as given by
~10! subject to the constraints of Eqs.~4! and~5!, which can
be written as dimensionless averages

s̄ j
xx5

sxx~Bj !

s0
5(

i 51

N

pi cos2 u i j 5
1

2
1

1

2 (
i 51

N

pi cos 2u i j ,

~11!

s̄ j
xy5

sxy~Bj !

s0
5

1

2 (
i 51

N

pi sin 2u i j . ~12!

Using the Lagrange multipliersl j
c andl j

s ( j 51,2, . . . ,M ),
whereM is the number of magnetic-field points, we can for
the partial function:

z~l1
c ,...,lM

c ,l1
s ,...,lM

s !

5(
j 51

N

expF2(
j 51

M

l j
c cos2 u i j GexpF2

1

2 (
j 51

M

l j
s sin 2u i j G .

~13!

Then the maximum-entropy probability distribution~distri-
bution of partial conductivities! is given by
03670
,
d

-
-

s

.

pi5expF2l02(
j 51

M

l j
c cos2 u i j 2

1

2 (
j 51

M

l j
s sin 2u i j G .

~14!

The values of constant Lagrange multipliers can be de
mined from

2
]

]l j
c ln z5s̄ j

xx ,

2
]

]l j
s ln z5s̄ j

xy ,

ln z5l0 . ~15!

In addition to their dependence on the mobilitym, the func-
tions cosuij and sinuij contain parametersBj . The present
maximum entropy approach allows us to estimate the a
ages of the derivatives with respect to magnetic field:

1

s0

]sxx

]Bj
52

1

l j
c

]

]Bj
ln z,

~16!
1

s0

]sxy

]Bj
52

1

l j
s

]

]Bj
ln z,

and thus to improve the ME-MSA optimization in a simila
fashion toiQMSA.

The ME-MSA general formalism developed involves tw
sets of Lagrange multipliersl j

c andl j
s . Substituting Eq.~14!

into Eqs.~11! and ~12!, we obtain two sets ofM nonlinear
equations
(
i 51

N H ~cos2 u i j 2s̄ j
xx!expF2(

j 51

M S l j
c cos2 u i j 1

1

2
l j

s sin 2u i j D G J 50, ~17!

(
i 51

N H S 1

2
sin 2u i j 2s̄ j

xyDexpF2(
j 51

M S l j
c cos2 u i j 1

1

2
l j

s sin 2u i j D G J 50. ~18!
ne,

m-

of
gh
The 2M equations allow@45# us to determine 2M Lagrange
multipliers l j

c and l j
s . The ME-MSA can be simplified as

follows. Noting that

sin2 u i j 1cos2 u i j 51,

1

2 (
i 51

N

pi sin 2u i j 5(
i 51

N

pi cosu i j ~12cos2 u i j !
1/2,

and using the approximate relations
(
i 51

N

pi f ~cosu i j !' f S (
i 51

N

pi cosu i j D , ~19!

the two sets of Lagrange multipliers can be reduced to o
because in this casel j

c5l j
s/25l j .

In the ME-MSA method developed here the tensor co
ponentssxx(B) and sxy(B) are expressed throughcosine
and sine trigonometrical functions in Eqs.~4! and ~5! and
Eqs. ~11! and ~12!, and are calculated as average values
these functions. The functions in true are linked throu
5-5
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trigonometric identities@see notes between Eqs.~18! and
~19!# and Lagrange’s procedure should be carried out on
basis of these restrictions. As a result, the 2M -dimensional
problem @Eqs. ~17! and ~18!# has been reduced to a
M-dimensional one Eq.~20!, where M is the number of
magnetic-field points. This reduced procedure allows us
combinesxx(B) andsxy(B) datasets ass̄ j

tot5s̄j
xx1s̄j

xy and to
simplify the software for the case of one set of linear eq
tions, instead of for two sets of linear equations, which
more difficult to solve. For our ME-MSA version and ass
ciated software the number of Lagrange multipliers can
ceed the numberM and even 2M and this aspect is on
advantage of the ME-MSA method. Therefore, we comp
sate for the reduction in the number of Lagrangian multip
ers used. One can trust the 2M to M reduction procedure
when the values ofrxx(B) and rxy(B) are comparable a
strong enough magnetic fieldsm iBj'1, but this is a genera
condition for all versions of MSA. Moreover in ME-MSA
we have the possibility to extend the number of magne
field points outside the range of minimal and maximal valu
of the measured experimental points. In the future, we int
to modify ME-MSA software for calculations with two se
of Lagrange multipliers, and we suggest that the results
be very close to those presented here.

In the results Eqs.~17! and ~18! reduce to a following
single set:

(
i 51

N H ~Ki j 2s̄ j
tot!expS 2(

j 51

M

l jKi j D J 50, ~20!

where

Ki j 5cos2 u i j 1
1

2
sinu i j 5

1

2
~11cos 2u i j 1sin 2u i j !,

~21!

s̄ j
tot5s̄ j

xx1s̄ j
xy .

The probability distribution becomes

pi5expF2l02(
j 51

M

Ki j l j G . ~22!

The mobility spectrum is then achieved by the iteration
Eq. ~22!, using successive approximation@46# and the fol-
lowing equation:

l j
~new!5l j

~old!2aS s̄ j
tot2(

i 51

N

Ki j pi D . ~23!

Herea is an adjustable parameter, which allows us to iter
Eqs.~22! and~23! until the set of probabilitiespi converges.
The value ofa can be chosen by a trial and error procedu
and is usually set to be less than unity for the stability of
computation~the so-called ‘‘under-relaxation’’ iteration!. In
general,a can take any value but being less than unity h
proved to be a good choice and we have typically useda
50.1– 0.5.
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IV. TESTING OF SYNTHETIC DATA

To demonstrate the ME-MSA technique, a synthe
dataset was generated and ME-MSA and QMSA analy
were performed. The synthetic dataset was calculated for
carriers with n15131011 cm22, m152000 cm2 V21 s21;
n25131011 cm22, m256000 cm2 V21 s21, and with 30
magnetic-field points equally spaced from 0 to 10 T. T
mobilities in the synthetic dataset are chosen to be h
enough (m iBmax.1) so that the resultant mobility spectra ca
be obtained with high accuracy. The number of mobil
points in the spectrum is 200, which are spaced equally
log scale for QMSA and linear scale for ME-MSA. Th
QMSA uses a cubic spline interpolation to obtain 200 d
points, while ME-MSA uses only the available 30 da
points. The mobility range is between 103 and
104 cm2 V21 s21 for holes, and between2103 to
2104 cm2 V21 s21 for electrons, and the iteration continue
until the spectrum does not change significantly, which
typically around 106 iterations for QMSA and 23104 itera-
tions for ME-MSA. The adjustable parametera for all ME-
MSA analyses, which gives smooth and stable converge
is 0.2.

Figure 1 shows the normalized mobility spectrum o
tained from both techniques for synthetic datasets with
ferent errors in resistivityrxx and Hall coefficient RH
5(rxy /B). For the ‘‘no error’’ case, both techniques yie

FIG. 1. Comparisons between QMSA and ME-MSA spectra
synthetic datasets for two carrier species (n15131011 cm22, m1

52000 cm2 V21 s21; n25131011 cm22, m256000 cm2 V21 s21),
subject to various errors inrxx and RH . ni is the sheet carrier
density andm i is the mobility, with i 51,2.
5-6
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the same spectra consisting of two well-separated peaks,
responding to two carrier species having mean mobilities
m1 andm2 . As the errors increase, each peak in the QM
spectrum splits into two sharp peaks while ME-MSA co
fortably maintains its initial two peaks. Consequently, t
number of carrier species obtained from ME-MSA will b
much more accurate.

For higher values of error~0.5% and 1.0%!, ME-MSA
also starts to show an artifact around the electron mob
21000 cm2 V21 s21. It should be noted that the initial peak
continue to dominate while the artifact is easily spotted as
incomplete peak.

Figure 2 demonstrates how the ME-MSA calculati
evolves when the true mobility spectrum corresponds
Gaussian distributions. The ratio of the standard deviatio
the mean mobility of the Gaussian distributions is set to
0.1 and the true distributions are shown as solid lines. A
300 000 iterations, which take around 5 min on a compu
running a 1-GHz Intel Pentium III processor, the ME-MS
closely resembles the true distribution.

The smoothness of ME-MSA is a very interesting featu
that cannot be achieved by any other existing mobility sp
trum technique. The shape of ME-MSA curves should p
vide information about the energy dependence of the re
ation time and the wave vector dependence of the cons
energy ‘‘surface,’’ as first postulated by Beck and Anders
@5#.

Another attractive feature of ME-MSA is the ability t
recover the conductivity of low-mobility carriers below th
limitation set byBmax

21 , without any modifications to the mai
calculation and without the need for empirical procedures.
demonstrate this, a synthetic dataset was generated for
carriers havingn15131013 cm22, m15200 cm2 V21 s21;
n25131012 cm22, m251500 cm2 V21 s21, with 0.1% er-
ror in rxx and RH , and 30 magnetic-field points equal
spaced from 0 to 10 T. The ME-MSA was carried out f
500 000 iterations and the result is shown in Fig. 3. T

FIG. 2. ME-MSA spectrum for a synthetic dataset correspo
ing to two carrier species: (n15131011 cm22, m1

52000 cm2 V21 s21; n25131011 cm22, m256000 cm2 V21 s21).
Each carrier species is assumed to have a Gaussian distributi
mobilities, which is represented by the thick solid line, with a fra
tional standard deviation of 0.1.
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peaks at the mobilitiesm1 and m2 are clearly resolved. It
should be noted that we choose mobilities that differ by
order of magnitude so that the low-mobility peak does n
overlap the high-mobility peak.

To summarize, the ME-MSA technique can produce a m
bility spectrum accurately, revealing the correct number
carrier species, and is less sensitive to experimental erro
good fit can be obtained within a reasonable calculation t
and the low-mobility (m low) carrier contribution with
m lowBmax,1 can be extracted successfully, provided t
higher-mobility (mhigh) carrier hasmhighBmax>1.5.

V. CONCLUSIONS

A powerful mathematical approach for investigations
multicarrier magnetotransport in heterogeneous mater
and device structures has been proposed on the basis o
maximum entropy principle and the mobility spectru
analysis technique. The underlying idea of ME-MSA is
determine the probability distribution of the reduced part
conductivity using the concept of entropy maximizatio
subject to the constraints imposed by the conductivity-ten
components derived as probability weighted quantities
from experimental Hall and magnetoresistivity data. It r
sults in a quantitative procedure for fitting multicarrier e
perimental data to theoretical forms and includes the follo
ing fundamental innovations.

~1! The standard unique formula for the entropy defin
the probability as a reduced partial conductivity, unphysi
negative conductivities are avoided, and the requiremen
non-negative conductivities is not imposed during iteratio

~2! The conditional extremum of the entropy and oth
functionals can be found on the basis of a stationary prop
involving Lagrange multipliers.

~3! The electron and hole mobilities of thesame magni-
tudecan be resolved by virtue of their different signs. This
due to introducing the idea of positive mobility for the hol
and negative one for the electrons, due to their opposite d
directions in a given electric field.

-

of
-

FIG. 3. ME-MSA spectrum of two carrier species (n1

5131011 cm22, m152000 cm2 V21 s21; n25131011 cm22, m2

56000 cm2 V21 s21), subject to 0.1% error inrxx andRH .
5-7
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~4! The iteration and fitting procedures are improved
the use of exponential functions in the minimization pr
cesses, in contrast to the power functions used in conv
tional MSA approaches.

~5! The number of mobility points chosen is not limited
the number of magnetic-field points and can be higher le
ing to a reduction in errors.

~6! A knowledge of the partial conductivity at a give
mobility m i does not require a measurement at fieldBi

5m i
21.

~7! The range of available mobilities can be extended
much lower and higher values thanm5Bmax

21 and Bmin
21 , re-

spectively.
In order to demonstrate the advantages of the ME-M

approach over the QMSA approach and other MSA varia
computations were carried out on a synthetic dataset, u
both the ME-MSA and the QMSA iterative algorithm
While the QMSA spectra tend to collapse to a discrete se
d functions, ME-MSA preserves linewidth information whe
runs are extended to a large number of iterations. Theref
we expect that this technique will serve as a suitable tool
the study of energy-dependent relaxation times and b
structures, as predicted by Beck and Anderson@5#. These
advantages, in combination with thea priori exclusion of
s
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.
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negative partial conductivities in accordance with the pr
ciple of maximum entropy and the sign separation of
mobility axis for electrons and holes, make ME-MSA a po
erful approach for obtaining quantitative mobility and carr
density information. It has been demonstrated that ME-M
gives a reduced level of errors compared to other MSA te
niques and yields useful results when the errors in the m
netoresistivity tensor components are 0.25%, which is re
istically attainable in most experiments. It is important
note that the ME-MSA algorithm is fully under compute
control and does not require any supporting procedures
the part of the user.
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